Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chuan-Ming Jin,* Cai-Yuan Chen, Wei-Dong Wang and Xin-Wan Zhou

Hubei Key Laboratory of Bioanalytic Techniques, Hubei Normal University, Huangshi 435002, People's Republic of China

Correspondence e-mail:
jincm1999@yahoo.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.046$
$w R$ factor $=0.133$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,1'-Methylenebis(4-methyl-1H-triazolium) dipicrate

In the crystal structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{6}{ }^{2+}$.$2 \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$, the asymmetric unit contains two picrate anions and one $1,1^{\prime}$-methylenebis(4-methyl- 1 H -triazolium) dication. The dihedral angle between the triazole rings of the dication is 76.1 (2) ${ }^{\circ}$,

Comment

Ionic liquids have attracted considerable interest as substitutes for volatile organic solvents in synthetic chemistry (Welton, 1999). Organic ionic salts with lower melting points, such as triazolium nitrate or perchlorate, are a new class of energetic materials because of their 'green chemistry' properties (Singh et al., 2006). 1,2,4-Triazolium picrate has been reported as an energetic material (Jin et al., 2006). In this report, we present the crystal structure of the title triazolium picrate, (I).

(I)

The asymmetric unit of (I) contains two picrate anions and one $1,1^{\prime}$-methylenebis(4-methyltriazolium) dication (Fig. 1). Within the dication, the dihedral angle between the triazole rings is $76.1(2)^{\circ}$. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding occurs between dications, and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding occurs between anions and dications (Table 1).

Received 9 October 2006
Accepted 28 October 2006

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{6}{ }^{2+} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$	$V=1268.33(15) \AA^{3}$
$M_{r}=636.44$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.666 \mathrm{Mg} \mathrm{m}^{-3}$
$a=7.0658(5) \AA$	Mo $K \alpha$ radiation
$b=8.8036(6) \AA$	$\mu=0.14 \mathrm{~mm}^{-1}$
$c=20.5831(14) \AA$	$T=292(2) \mathrm{K}$
$\alpha=96.587(1)^{\circ}$	Block, yellow
$\beta=90.122(1)^{\circ}$	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$
$\gamma=94.255(1)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
14366 measured reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.133$
$S=1.08$
5485 reflections
408 parameters
$V=1268.33(15) \AA^{3}$
$D_{x}=1.666 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.14 \mathrm{~mm}^{-1}$
Block, yllow
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

5485 independent reflections
4435 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=27.0^{\circ}$

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0674 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.39 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}_{\mathrm{max}} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 7^{\mathrm{i}}$	0.96	2.31	3.217 (3)	157
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {i }}$	0.93	2.42	3.286 (2)	156
C3-H3 \cdots O8	0.93	2.17	2.914 (2)	136
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 14$	0.93	2.35	3.066 (2)	133
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O}$	0.97	2.41	3.091 (2)	127
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 13^{\text {ii }}$	0.97	2.53	3.211 (2)	127
C5-H5 \cdots O2	0.93	2.39	2.911 (2)	115
C5-H5 . O8	0.93	2.48	3.138 (2)	127
C6-H6 $\cdot \mathrm{O} 1^{\text {iii }}$	0.93	2.47	3.350 (2)	159
C6-H6 ${ }^{\text {O }} \mathrm{O}^{\text {iii }}$	0.93	2.41	3.042 (2)	125
$\mathrm{C} 7-\mathrm{H} 74 \cdots \mathrm{~N} 2^{\mathrm{iv}}$	0.96	2.62	3.467 (2)	148
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C} \cdots \mathrm{O} 1$	0.96	2.51	3.429 (3)	161

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+2,-z$; (iii) $x-1, y, z$; (iv) $x, y-1, z$.
Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$, and the torsion angles were refined to fit the electron density, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were positioned geome-

Figure 1
The asymmetric unit of (I), shown with 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
trically, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and $0.97 \AA$ (methylene), and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the financial support of the Natural Science Fund for Distinguished Young Scholars of Hubei Province, People's Republic of China (grant No. 2006ABB038).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Jin, C.-M., Wu, L.-Y., Chen, C.-Y. \& Hu, S.-L. (2006). Acta Cryst. E62, o4515o4516.
Jin, C.-M., Ye, C., Piekarski, C., Twamley, B. \& Shreeve, J. M. (2005). Eur. J. Inorg. Chem. 3760-3767.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Singh, R. P., Verma, R. D., Meshri, D. T. \& Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584-3601.
Welton, T. (1999). Chem. Rev. 99, 2071-2083.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

